

Introduction

- We are developing low-β superconducting cavities for ADS applications (TRASCO)
- The TRASCO accelerator is a 1 GeV, 30 mA proton linac
- The intermediate energy part,
 5-100 MeV, works at 352 MHz
- Important constraint: ADS systems with sub-critical reactors do not tolerate beam interruptions longer than ~1 s

Accelerator Transmutation of Waste

Aim: Energy production and waste transmutation by means of an accelerator driven sub -critical reactor

Beam lifetime in a repairable linac

- Most beam interruptions come from failure of rf systems
- Beam lifetime can be improved significantly if the accelerator can tolerate the failure of one cavity and if this can be fixed on-line, e.g. replacing the power amplifier

Cavity constraints

 The linac can tolerate one cavity failure if the maximum energy gain per cavity is limited: DW_{cavity} < DW_{bucket} - DW_{beam}

- •Switching off one more cavity in the proper place allows to put back the beam in the center of the bucket
- •Splitting the acceleration in many independent units, however, is not efficient in terms of R_{sh}: the superconducting solution is mandatory

100 MeV TRASCO linac

tolerant of cavity failures

- 352 MHz, 30 mA proton RFQ
- 5-100 MeV ISCL
- FODO lattice
- wide- β SC cavities
- △W≤ 0.5 MeV/cavity (up to at least ~20 MeV)

Required R&D:

- low cost high reliability
 solid state amplifiers
- superferric quads
- cavities

Low cost - high reliability solid state amplifiers

• 1st 2500 W amplifier constructed and successfully tested

going on:

- Testing in severe conditions
- Engineering for production
- Design of 5-20 kW units

- Modular construction
- MOSFET technology
- Circulators included
- Unconditionally stable
- Performance
- Reliability

Superferric quadrupole magnet

- Developed at MSU-NSCL in collaboration with INFN-LNL for superconducting linacs
 - Very compact, to be used inside cryostats-magnetic shielding required
 - tested at 300K; test at 4.2 K to be done

TABLE I PHYSICAL PARAMETERS

Property	Specification	
Effective length	50 mm	
Radius	20 mm	
Gradient	31 T/m	
Turns of 0.431 mm wire	78	
Current (2-D calculation)	63 A	

Examples of low- β cavities for proton beams

ANL $\lambda/2$ (355 MHz) and $\lambda/4$ (400 MHz)-built and tested

ANL 2-gap spoke (350 MHz) – built and tested and 3 gap (850 MHz) spoke - proposed

The TRASCO reentrant cavity

1 0.9 0.8 0.7 0.6 0.7 0.6 0.4 0.3 0.2 0.1 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 β

- 352 MHz cw
- single gap
- same cavity from 5 to 100 MeV
- Bore diameter 30 mm
- Field Axial symmetry

Rf design

In the final shape the intermediate step was smoothed to 60 deg

Main specifications:

- •352 MHz, β≥0.1
- •30 mm bore diameter
- •Inner length ≤ 80 mm
- •∆W≈0.5 MV at 7W

Rf codes used:

Superfish, HFFS

Cavity inner diameter	536	mm
Gap length	30	mm
Effective gap length	53	mm
Bore diameter	30	mm
Eff. acceleration length	80	mm
U/ E _a ²	0.034	J/(MV/m)
E_p/E_a	3.0	
H_p/E_a	3.1	mT/(MV/m)
$\Gamma = R_s \times Q$	83	Ω
R _{sh} /Q	84	Ω

Multipacting simulations

Total Number of runs with TVTRAG

Simulation:

- code TWTRAJ (courtesy of R.Parodi, INFN Genova)
- ~60000 Runs
- 0.005 MV/m steps in E_a
- 5 mm steps in e⁻ starting position

Results:

- MP negligible near the gap
- All levels at the equator: the equator profile is critical
- Ellipsoidal shape 1.5:1 free of MP

Mechanical design

- •Main constraints:
 - -4 bar max pressure
 - -Physical length without tuner <130 mm
 - -Stability against He pressure fluctuations
 - -tunability
- Double wall structure with interconnecting rings
- •3 mm thick niobium sheet
 - -Inner shell: RRR>150 Nb
 - -Outer shell: normal grade Nb

- •codes used:
 - Autocad (preliminary)
 - •I-DEAS (main)

Mechanical construction

Inner shell

- Designed at LNL
- Built at Zanon, Schio (Vicenza) Italy
- CP treated at CERN
- Tested at LNL

Side view with rf ports

Detail of the interconnecting rings

Final cavity after welding of the outer shell

Mechanical test results

(naked resonator - no tuner nor reinforcement)

Lorenz force detuning test

parameter	measured	calculated	units
Rf frequency f final adjustment by plastic deformation foreseen	348.673	352	MHz
Frequency response to pressure df/dP from 0 to 1 bar in the helium vessel	~ -258	~ -140	Hz/mbar
Lorenz force detuning df/dE _a measured from 0.2 to 4.4 MV/m	~ -300	~ -170	Hz/(MV/m) ²
Lower mechanical mode frequency f _{mech}	~ 195	~ 200	Hz

Superconducting Reentrant Cavity 1st Rf test at 4.2K

1st test (after CP): capacitive coupler at the beam port insufficient coupling: MP and Rf conditioning impossible

- Low field MP disturbing the test
- •High Q_0 : 1.7×10⁹ Low field $R_s \cong 49 \text{ n}\Omega$ ($R_{res} \cong 10 \text{ n}\Omega$)
- Strong field emission above 5 MV/m

Superconducting Reentrant Cavity 2nd Rf test at 4.2K

2nd test (after severe vacuum failure due to rf feedthrough burning; cavity exposed to dusty air during repair). Coupler problems fixed; MP and rf conditioning possible

- low field MP easily conditioned
- contamination with dust and burning residues: Q degradation
- •Increased E_a, FE conditioned

Superconducting Reentrant Cavity 3rd Rf test at 4.2K

3rd test after HPR of the cavity from outside through rf- and beam- ports.

- •no MP level above 0.03 MV/m; low field levels easily conditioned
- •Q₀ partially recovered: $R_s \cong 72 \text{ n}\Omega$ ($R_{res} \cong 33 \text{ n}\Omega$)
- $\bullet E_a = 7.5 \text{ MV/m} @ 7W (0.6 \text{ MV})$

Next steps

- •HPR from inside and test again
- Build and test the tuner
- Build a 5 kW rf coupler for the SPES project

Considering the surface resistance measured in the first test, and the relatively low peak fields reached, we can expect further improvement of the 7 W gradient

TRASCO Reentrant Cavity: advantages and drawbacks

Advantages:

- Short, compact and light, the He tank is part of the structure
- Relatively simple construction
- EM field perfectly symmetric
- very wide β acceptance
- Usable from very low energy (\sim 5 MeV protons, $\beta \sim$ 0.1)
- Low peak fields: possibility of high gradient

Drawbacks:

- not recommended for pulsed operation (Lorenz force detuning)
- relatively low energy gain/cavity
- Only inductive couplers to preserve compactness

Conclusions

- •We have studied a high reliability design for the 30 mA, 5-100 MeV proton linac of TRASCO, based on reentrant cavities
- We have designed, built and tested a 352 MHz superconducting reentrant cavity
 - -Short (13 cm without tuner) and very low β
 - free of dangerous multipacting
 - high gradient: 7.5 MV/m measured at the nominal power of 7 W
 - low peak fields: space for significant improvements
- Reentrant cavities possess some unique features that can be profitably used in low- β linacs, especially in the range $0.1 \le \beta \le 0.2$